

Jennifer Raaf NEPPSR 2006 Aug. 14-18, 2006

Basic Tutorial

Topics

What is ROOT?
Interactive ROOT session

- command line vs. macros vs. user-compiled code
Opening files/ accessing information
Trees and histograms
Fitting
Other useful things...

Exercises

ROOT

What is it?
Very versatile software package for performing analysis on HEP data

– develop and apply cuts on data
– perform calculations & fits
– make plots
– save results in ROOT files

ROOT can be used in many ways:
Command line – good for quickly making plots, checking file contents, etc.
Unnamed macros – execute commands as if you typed them on the command line

list of commands enclosed by one set of { }.
execute from ROOT command line: “.x file.C”

Named macros – best for analysis, can be compiled and run outside of ROOT, or loaded
and executed during interactive session

Interactive ROOT uses a C++ interpreter (CINT) which allows (but does not require) you
to write pseudo-C++

Be careful! This will make your programming much more difficult later in life!
It's best if you try to use standard C++ syntax, instead of the CINT shortcuts.

ROOT CINT syntax allows the following sloppy things:
“.” and “->” are interchangeable
“;” is optional at the end of single commands
Many commands may be accessed interactively (point and right-click in plots)

Interactive ROOT

> root

 * *
 * W E L C O M E to R O O T *
 * *
 * Version 5.12/00 10 July 2006 *
 * *
 * You are welcome to visit our Web site *
 * http://root.cern.ch *
 * *

FreeType Engine v2.1.9 used to render TrueType fonts.
Compiled on 11 July 2006 for macosx with thread support.

CINT/ROOT C/C++ Interpreter version 5.16.13, June 8, 2006
Type ? for help. Commands must be C++ statements.
Enclose multiple statements between { }.

root [0] TFile* f1 = new TFile("histogram.root");
root [1] f1->ls();
TFile** histogram.root Histograms for ROOT class
 TFile* histogram.root Histograms for ROOT class
 KEY: TH1F hist1;1 Function to be fit
 KEY: TH1F hist2;1 Another function to be fit
root [2] .q
>

Load a file

List contents of file

This file contains 2 1-dimensional histograms, named “hist1” and “hist2”Quit ROOT

Canvases

TCanvas* c1 = new TCanvas("c1","Example canvas",300,600);

c1->Divide(1,2);

h1->GetXaxis()->SetTitle(“Gaussian”);
h1->SetMarkerColor(4);
h1->SetMarkerStyle(21);

c1->cd(1);
h1->Draw(“ep”);

ROOT will automatically create a canvas for you if you try to draw something, but you can
define your own (e.g., if you need a particular size, or you want equal-sized sub-divisions).

x,y
dimensions

canvas
title

canvas
name

Divide the canvas into 2 areas
(1 column, 2 rows)

Change to the 1st canvas area and draw histogram “h1”:

300 pixels

Set various attributes of histogram “h1”:

Histograms are drawn via the THistPainter class in ROOT.
You can find all drawing options by looking at the web documentation for THistPainter

http://root.cern.ch/root/html/THistPainter.html

Options for TCanvas: http://root.cern.ch/root/html/TCanvas.html

e = draw with error bars
p = draw with points (instead of line)

http://root.cern.ch/root/html/THistPainter.html

Trees
Create pointer to “tree1”
that exists in file “f1”

Print structure of tree to screen
This tree contains 7 variables:
 event, ebeam, px, py, pz, zv, chi2

Turn on statistics box

Draw scatter plot (py vs. px)
for events with ebeam>150

Trees, cont'd.

To project something from a tree into a histogram,
first define a histogram:

TH1F* h_ebeam = new TH1F("h_ebeam", "Beam Energy", 100, 149.0, 151.0);

mytree->Project("h_ebeam","ebeam","(px > 10.0) || (py <= 5.0)");

TCut* cut1 = new TCut("x > 0");
TCut* cut2 = new TCut("y == sqrt(2+x**2)”);
TCut* cut3 = new TCut(*cut1 && *cut2);

mytree->Draw("ebeam", *cut3);

Cuts are specified using C logic

&& AND
|| OR
== equal
!= NOT equal
> greater than
< less than
>= greater/equal
<= less/equal

cuts: optional argument

Name Title
Number
of bins

Low edge,
 High edge

Then use the TTree class member “Project” to put the tree contents into the histogram:

To define complicated or often-used cuts:

Then use the TCut object when you draw (or project)
the variable. Note that "" are not used with TCut objects.

Fitting

Often you will need to fit distributions to determine the best parameters (e.g., particle mass,
width, lifetime, etc.)

Several ways to define a fitting function in ROOT:
➢ Use ROOT's pre-defined functions (see TF1 and TFormula class descriptions)

TF1* func1 = new TF1(“func1”, “gaus”);
TF1* func2 = new TF1(“func2”, “gaus(0) + expo(3)”);

➢ Define your own function within the TF1 constructor

TF1* func1 = new TF1(“func1”, “[0]*x*exp([1]*x)”);
func1->SetParameters(5.0, -0.5);

➢ Define your own function outside of the TF1 class

TF1* func1 = new TF1(“func1”, crazy_function, 0.0, 10.0, 2);

Double_t crazy_function(Double_t *x, Double_t *par){
Float_t xx = x[0];
Double_t function = abs(par[0]*sin(par[1]*xx)/xx);

}

Then fit the desired histogram or tree variable:

h1->Fit(“func1”);
tree1->Fit(“func1”,”ebeam”,*cut3);

Low
edge

High
edge

Number of
parameters

root [12] h1->Fit("gaus")
 FCN=52.9686 FROM MIGRAD STATUS=CONVERGED 56 CALLS 57 TOTAL
 EDM=5.33373e-08 STRATEGY= 1 ERROR MATRIX ACCURATE
 EXT PARAMETER STEP FIRST
 NO. NAME VALUE ERROR SIZE DERIVATIVE
 1 Constant 4.83945e+02 5.94585e+00 1.74050e-02 -4.07788e-05
 2 Mean 1.70284e+01 3.29593e-02 1.18187e-04 -6.96677e-03
 3 Sigma 3.28077e+00 2.33731e-02 6.90977e-06 -1.08841e-01
(Int_t)0
root [13] h1->GetXaxis()->SetTitle(“gaussian distribution”);
root [14] h1->Draw("e1");
root [15] TF1 *fitinfo = h1->GetFunction(“gaus”);
root [16] float gaus_constant = fitinfo->GetParameter(0);
root [17] float gaus_mean = fitinfo->GetParameter(1);
root [18] float gaus_sigma = fitinfo->GetParameter(2);
root [19] float gaus_chi2 = fitinfo->GetChisquare();
root [20] int n_events = h1->GetEntries();

Simple fitting example

Available ROOT fit functions
may be found in TFormula
class.

A few examples:
 gaus
 expo
 polN (N=0,1,2,...)

root [0] TFile *f1 = new TFile(“tree.root”);
root [1] TTree *t = (TTree *)f1->Get(“tree1”);

ROOT can create files for you that contain a code structure for analyzing trees

root [2] t->MakeClass(“TreeAnalysis”);

Load a file and tree

Use the MakeClass method to create code
This will create

TreeAnalysis.C and
TreeAnalysis.h

Add your analysis code to the .C file, then execute in ROOT

root [0] .L TreeAnalysis.C
root [1] TreeAnalysis mytreeanalysis;
root [2] mytreeanalysis.Loop();

“L”oad the file
Create an object of type TreeAnalysis
Access the “Loop” method

(where your analysis code is)

MakeClass is a quick way to create a framework for analyzing your data
– a good way to start, but... it can be fairly slow, especially in the case of trees with

many variables
– for long projects (like your thesis work!), probably better to write your own code...

Skeleton code for analysis

Other useful ROOT classes

TLorentzVector
A general 4-vector class with implemented functionality to do almost everything
you typically need to do with 4-vectors.

dot products
rotations
boosting
angle between vectors
magnitude...

TFractionFitter
Fits data histogram using multiple MC histograms
(instead of a defined function)

TFitter, TMinuit
Classes for fitting

THStack
Takes a collection of histograms and draws them
“stacked” on each other.

Remember, the ROOT web documentation is your friend!

http://root.cern.ch/root/Reference.html

Useful links

ROOT Classes http://root.cern.ch/root/Categories.html
ROOT Tutorials http://root.cern.ch/root/Tutorials.html
ROOT Discussion Forum http://root.cern.ch/phpBB2/

BaBar ROOT tutorials
http://www.slac.stanford.edu/BFROOT/www/doc/workbook/root1/root1.html
http://www.slac.stanford.edu/BFROOT/www/doc/workbook/root2/root2.html

Nevis ROOT tutorial
http://www.nevis.columbia.edu/~seligman/root-class/

http://root.cern.ch/root/Categories.html
http://root.cern.ch/root/Tutorials.html
http://root.cern.ch/phpBB2/
http://www.slac.stanford.edu/BFROOT/www/doc/workbook/root1/root1.html
http://www.slac.stanford.edu/BFROOT/www/doc/workbook/root2/root2.html
http://www.nevis.columbia.edu/~seligman/root-class/

Exercise 1

Write a macro to open the file “neppsr_basictutorial1.root”
What is in the file?

Create a canvas and draw one of the things in the file
- Try changing the line color
- Try drawing with error bars
- How many bins are there? (Hint: Look at TH1 class description)
- What is the bin width?

Draw 2 of the things in the file on the same plot

Perform a fit on the first object contained in the file
- What type of shape did you use for the fit?
- What is the fitted width? fitted mean? true mean?
- What is the χ2 for the fit? Is it a good fit?

Perform a fit on the second object contained in the file
- Try fitting with the built-in “expo” function first

Does it give a good fit?
- Define your own TF1 with the form par0*x*exp(par1*x)

Perform the fit again. Does it give a good fit?
Set reasonable starting parameters for your function.
Perform the fit again. What are the fitted values of the 2 parameters?

If you have time, try to figure out what function would fit well for the third object.

Download the files in the directory http://hep.bu.edu/~jlraaf/NEPPSR/basic/

Exercise 2

Read through the named macro “make_tree.C” to learn what it will do.

Run the code once, then look at the output file.
Draw the histogram
Draw one of the tree variables

Modify the code:
Add the missing variables in “itree”
Create some new branches for “newtree”
Make a new histogram
Run the code and verify that your new additions worked properly

Using MakeClass:
Start ROOT, load the file “neppsr_basictutorial2.root” and make a pointer to the tree
Use MakeClass to create skeleton code

Modify the Loop() method to perform the same actions as make_tree.C
(be sure to change the name of your output file!)

Open both output files simultaneously in ROOT and compare them.

