Runge-Kutta Methods

Luis Sanchez

Second Order Runge-Kutta Method

$$
\frac{d y}{d x}=f(x, y) \quad \text { with the initial condition: } y\left(x_{1}\right)=y_{1}
$$

The general form of second-order Runge-Kutta methods is:

$$
y_{i+1}=y_{i}+\left(c_{1} K_{1}+c_{2} K_{2}\right) h
$$

Con:

$$
\begin{gathered}
K_{1}=f\left(x_{i}, y_{i}\right) \\
K_{2}=f\left(x_{i}+a_{2} h, y_{i}+b_{21} K_{1} h\right)
\end{gathered}
$$

where c_{1}, c_{2}, a_{2}, and b_{21} are constants. The values of these constants vary with the specific second-order method.

Modified Euler method in the form of a secondorder Runge-Kutta method

For the modified Euler method, the constants are:

$$
c_{1}=\frac{1}{2}, \quad c_{2}=\frac{1}{2}, \quad a_{2}=1, \quad \text { and } \quad b_{21}=1
$$

Substituting these constants yields:

$$
y_{i+1}=y_{i}+\frac{1}{2}\left(K_{1}+K_{2}\right) h
$$

$$
\begin{gathered}
K_{1}=f\left(x_{i}, y_{i}\right) \\
K_{2}=f\left(x_{i}+h, y_{i}+K_{1} h\right)
\end{gathered}
$$

Midpoint method in the form of a second-order Runge-Kutta method

For the midpoint method, the constants are:

$$
c_{1}=0, \quad c_{2}=1, \quad a_{2}=\frac{1}{2}, \quad \text { and } \quad b_{21}=\frac{1}{2}
$$

Substituting these constants yields:

$$
\begin{gathered}
y_{i+1}=y_{i}+K_{2} h \\
K_{1}=f\left(x_{i}, y_{i}\right) \\
K_{2}=f\left(x_{i}+\frac{1}{2} h, y_{i}+\frac{1}{2} K_{1} h\right)
\end{gathered}
$$

Heun's method

In Heun's method the constants are:
$c_{1}=\frac{1}{4}, \quad c_{2}=\frac{3}{4}, \quad a_{2}=\frac{2}{3}, \quad$ and $\quad b_{21}=\frac{2}{3}$
Substituting these constants yields:

$$
\begin{gathered}
y_{i+1}=y_{i}+\left(\frac{1}{4} K_{1}+\frac{3}{4} K_{2}\right) h \\
K_{1}=f\left(x_{i}, y_{i}\right) \\
K_{2}=f\left(x_{i}+\frac{2}{3} h, y_{i}+\frac{2}{3} K_{1} h\right)
\end{gathered}
$$

Example 1

Second Order Runge-Kutta Method in form of modified Euler

Problem:
$\frac{d y}{d x}=1+y^{2}+x^{3}, \quad y(1)=-4$
Use RK2 to find $y(1.01), y(1.02)$

$\sqrt{\left(\begin{array}{l}\mathrm{h}=0.01 \\ f(x, y)=1+y^{2}+x^{3} \\ x_{0}=1, \quad y_{0}=-4\end{array}\right.}$

$$
y_{i+1}=y_{i}+\frac{1}{2}\left(K_{1}+K_{2}\right) h
$$

$$
\begin{gathered}
K_{1}=f\left(x_{i}, y_{i}\right) \\
K_{2}=f\left(x_{i}+h, y_{i}+K_{1} h\right)
\end{gathered}
$$

Step 1:

$$
\begin{aligned}
& K_{1}=f\left(x_{0}, y_{0}\right)=\left(1+y_{0}^{2}+x_{0}^{3}\right)=18.0 \\
& K_{2}=f\left(x_{0}+h, y_{0}+K_{1} h\right)=\left(1+\left(y_{0}+0.18\right)^{2}+\left(x_{0}+.01\right)^{3}\right)=16.92 \\
& y_{1}=y_{0}+\frac{h}{2}\left(K_{1}+K_{2}\right)=-4+\frac{0.01}{2}(18+16.92)=-3.8254
\end{aligned}
$$

Example 1

Second Order Runge-Kutta Method: Modified Euler

Problem:
$\frac{d y}{d x}$ $d x$$+y^{2}+x^{3}, \quad y(1)=-4$
Use $R K 2$ to find $y(1.01), y(1.02)$
:---
$f(x, y)=1+y^{2}+x^{3}$ $x_{1}=1.01, \quad y_{1}=-3.8254$

Step 2:

$$
\begin{aligned}
& K_{1}=f\left(x_{1}, y_{1}\right)=\left(1+y_{1}^{2}+x_{1}^{3}\right)=16.66 \\
& K_{2}=f\left(x_{1}+h, y_{1}+K_{1} h\right)=\left(1+\left(y_{1}+0.1666\right)^{2}+\left(x_{1}+.01\right)^{3}\right)=15.45 \\
& y_{2}=y_{1}+\frac{h}{2}\left(K_{1}+K_{2}\right)=-3.8254+\frac{0.01}{2}(16.66+15.45)=-3.6648
\end{aligned}
$$

Example 1

Summary of the solution

$$
\begin{aligned}
& \text { Problem: } \\
& \frac{d y}{d x}=1+y^{2}+x^{3}, \quad y(1)=-4 \\
& \text { Use RK2 to find } y(1.01), y(1.02)
\end{aligned}
$$

Summary of the solution

i	x_{i}	y_{i}
0	1.00	-4.0000
1	1.01	-3.8254
2	1.02	-3.6648

Numerically Solving ODE in Matlab

Problem:
$\frac{d y}{d x}=1+y^{2}+x^{3}, \quad y(1)=-4$, over the interval[1,2].
Using Euler modified with $\mathrm{h}=0.01,0.02$ y 0.5

$$
y_{i+1}=y_{i}+\frac{1}{2}\left(K_{1}+K_{2}\right) h
$$

$$
\begin{gathered}
K_{1}=f\left(x_{i}, y_{i}\right) \\
K_{2}=f\left(x_{i}+h, y_{i}+K_{1} h\right)
\end{gathered}
$$

- Step 1: Create a M-file for dy/dx as firstode.m
function yprime=firstode (x,y); yprime $=1+y^{\wedge} 2+x^{\wedge} 3$;

Step 2: Create a M-file to implement Euler modified. The Matlab program must return two column vectors, the first with values of x and the second with value of y.

```
function [ x,y ]=odeRK2EulerModified(ODE,a,b,h,yini)
% Variables de entrada:
% ODE: Nombre para la función que calcula dy/dx.
% a: Primer valor del intervalo de solucion x.
% b: Ultimo valor del intervalo de solucion x.
% h: Tamaño de paso.
% yini: valor inicial.
% De variables de salida:
% x: Un vector con las coordenadas x de la solución.
% y: Un vector con las coordenadas y de la solución.
x(1) = a; y(1)=yini;
n = (b-a)/h;
for i = 1:n
    x(i+1)=x(i)+h;
    Kl = ODE(x(i),y(i));
    xh = x(i) + h;
    yKl = y(i) + Kl*h;
    K2 = ODE (xh,yKl);
    Y (i + 1) =y (i) + (Kl+K)*h*0.5;
end
end
```

Step 3: At the Matlab command window
>> $a=1 ; b=2$;
\gg h1 $=0.01$; yini $=-4$;
>> [X1,Y1]=odeRK2EulerModified(@firstode,a,b,h1,yini);
\gg h1 $=0.02$;
$\gg[\mathrm{X} 2, \mathrm{Y} 2]=$ odeRK2EulerMnodified(@firstode a h h? vini) $\dot{\bar{x}}_{\dot{x}}$
>> h1 = 0.5;
>> [X3, Y3]=odeRK2El
>> $\operatorname{plot}\left(\mathrm{X} 1, \mathrm{Y} 1\right.$, '*r', $\mathrm{X} 2, \mathrm{Y}^{\prime}$
>> fprintf('\%4.2f \%4.6f

Runge-Kutta Methods

Third Order Runge Kutta (RK3)
$K_{1}=f\left(x_{i}, y_{i}\right)$
$K_{2}=f\left(x_{i}+\frac{1}{2} h, y_{i}+\frac{1}{2} K_{1} h\right)$
$K_{3}=f\left(x_{i}+\frac{1}{2} h, y_{i}-K_{1} h+2 K_{2} h\right)$
$y(x+h)=y(x)+\frac{1}{6}\left(K_{1}+4 K_{2}+K_{3}\right)$

Problem

Consider the following first-order ODE:

$$
\frac{d y}{d t}=\frac{y}{t}-0.5 t^{2} \quad \text { from } t=2 \text { to } t=5 \text { with } y(2)=4
$$

(a) Solve with the Heun's method using $\mathrm{h}=0.5,1$.
(b) Solve with the classical third-order Runge-Kutta method using $\mathrm{h}=1$.

The analytical solution of the ODE is:

$$
y=-\frac{t^{3}}{4}+3 t
$$

In each part, calculate the error between the true solution and the numerical solution at the points where the numerical solution is determined.

Classical Fourth-Order RungeKutta Method

The most popular RK methods are fourth-order, and the most commonly used form is:
where:

$$
y_{i+1}=y_{i}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) h
$$

$$
\begin{aligned}
& k_{1}=f\left(t_{i}, y_{i}\right) \\
& k_{2}=f\left(t_{i}+\frac{1}{2} h, y_{i}+\frac{1}{2} k_{1} h\right) \\
& k_{3}=f\left(t_{i}+\frac{1}{2} h, y_{i}+\frac{1}{2} k_{2} h\right) \\
& k_{4}=f\left(t_{i}+h, y_{i}+k_{3} h\right)
\end{aligned}
$$

Exercise

Solving by hand a first-order ODE using the fourth-order Runge-Kutta method.
$\frac{d y}{d x}=-1.2 y+7 e^{-0.3 x}$ from $x=0$ to $x=2.5$ with the initial condition $y=3$ at $x=0$.
Using $h=0.5$.

Solution:

The first point of the solution is $(0,3)$, which is the point where the initial condition is given. The values of x and y at the first point are $x_{1}=0$ and $y_{1}=3$. The rest of the solution is done in steps. In each step the next value of the independent variable is calculated by:

$$
x_{i+1}=x_{i}+h=x_{i}+0.5
$$

The value of the dependent variable $\mathrm{Y}_{\mathrm{i}+1}$ is calculated by first evaluating K1, K2, K3 and K4 using:

$$
\begin{aligned}
& K_{1}=f\left(x_{i}, y_{i}\right) \\
& K_{2}=f\left(x_{i}+\frac{1}{2} h, y_{i}+\frac{1}{2} K_{1} h\right) \\
& K_{3}=f\left(x_{i}+\frac{1}{2} h, y_{i}+\frac{1}{2} K_{2} h\right) \\
& K_{4}=f\left(x_{i}+h, y_{i}+K_{3} h\right)
\end{aligned}
$$

And then substituting the Ks:

$$
y_{i+1}=y_{i}+\frac{1}{6}\left(K_{1}+2 K_{2}+2 K_{3}+K_{4}\right) h
$$

First step: In the first step $\mathrm{i}=1$

$$
\begin{aligned}
& x_{2}=x_{1}+0.5=0+0.5=0.5 \\
& K_{1}=-1.2 y_{1}+7 e^{-0.3 x_{1}}=-1.2 \cdot 3+7 e^{-0.3 \cdot 0}=3.4 \\
& x_{1}+\frac{1}{2} h=0+\frac{1}{2} \cdot 0.5=0.25 \quad y_{1}+\frac{1}{2} K_{1} h=3+\frac{1}{2} \cdot 3.4 \cdot 0.5=3.85 \\
& K_{2}=-1.2\left(y_{1}+\frac{1}{2} K_{1} h\right)+7 e^{-0.3\left(x_{1}+\frac{1}{2} h\right)}=-1.2 \cdot 3.85+7 e^{-0.3 \cdot 0.25}=1.874 \\
& y_{1}+\frac{1}{2} K_{2} h=3+\frac{1}{2} \cdot 1.874 \cdot 0.5=3.469 \\
& K_{3}=-1.2\left(y_{1}+\frac{1}{2} K_{2} h\right)+7 e^{-0.3\left(x_{1}+\frac{1}{2} h\right)}=-1.2 \cdot 3.469+7 e^{-0.3 \cdot 0.25}=2.331 \\
& y_{1}+K_{3} h=3+2.331 \cdot 0.5=4.166 \\
& K_{4}=-1.2\left(y_{1}+K_{3} h\right)+7 e^{-0.3\left(x_{1}+h\right)}=-1.2 \cdot 4.166+7 e^{-0.3 \cdot 0.5}=1.026 \\
& y_{2}=y_{1}+\frac{1}{6}\left(K_{1}+2 K_{2}+2 K_{3}+K_{4}\right) h=3+\frac{1}{6}(3.4+2 \cdot 1.874+2 \cdot 2.331+1.026) \cdot 0.5=4.069
\end{aligned}
$$

At the end of the first step: $x_{2}=0.5, y_{2}=4.069$

$$
\begin{aligned}
& x_{3}=x_{2}+0.5=0.5+0.5=1.0 \\
& K_{1}=-1.2 y_{2}+7 e^{-0.3 x_{2}}=-1.2 \cdot 4.069+7 e^{-0.3 \cdot 0.5}=1.142 \\
& x_{2}+\frac{1}{2} h=0.5+\frac{1}{2} \cdot 0.5=0.75 \quad y_{2}+\frac{1}{2} K_{1} h=4.069+\frac{1}{2} \cdot 1.142 \cdot 0.5=4.355 \\
& K_{2}=-1.2\left(y_{2}+\frac{1}{2} K_{1} h\right)+7 e^{-0.3\left(x_{2}+\frac{1}{2} h\right)}=-1.2 \cdot 4.355+7 e^{-0.3 \cdot 0.75}=0.3636 \\
& y_{2}+\frac{1}{2} K_{2} h=4.069+\frac{1}{2} \cdot 0.3636 \cdot 0.5=4.16 \\
& K_{3}=-1.2\left(y_{2}+\frac{1}{2} K_{2} h\right)+7 e^{-0.3\left(x_{2}+\frac{1}{2} h\right)}=-1.2 \cdot 4.16+7 e^{-0.3 \cdot 0.75}=0.5976 \\
& y_{2}+K_{3} h=4.069+0.5976 \cdot 0.5=4.368 \\
& K_{4}=-1.2\left(y_{2}+K_{3} h\right)+7 e^{-0.3\left(x_{2}+h\right)}=-1.2 \cdot 4.368+7 e^{-0.3 \cdot 1.0}=-0.0559 \\
& y_{3}=y_{2}+\frac{1}{6}\left(K_{1}+2 K_{2}+2 K_{3}+K_{4}\right) h=4.069+\frac{1}{6}[1.142+2 \cdot 0.3636+2 \cdot 0.5976+(-0.0559)] \cdot 0.5=4.32 \\
& \text { At the end of the second step: } x_{3}=1.0, y_{3}=4.32
\end{aligned}
$$

Third step: In the third step i=3

$$
\begin{aligned}
& x_{4}=x_{3}+0.5=1.0+0.5=1.5 \\
& K_{1}=-1.2 y_{3}+7 e^{-0.3 x_{3}}=-1.2 \cdot 4.32+7 e^{-0.3 \cdot 1.0}=0.001728 \\
& x_{3}+\frac{1}{2} h=1.0+\frac{1}{2} \cdot 0.5=1.25 \quad y_{3}+\frac{1}{2} K_{1} h=4.32+\frac{1}{2} \cdot 0.001728 \cdot 0.5=4.320 \\
& K_{2}=-1.2\left(y_{3}+\frac{1}{2} K_{1} h\right)+7 e^{-0.3\left(x_{3}+\frac{1}{2} h\right)}=-1.2 \cdot 4.32+7 e^{-0.3 \cdot 1.25}=-0.373 \\
& y_{3}+\frac{1}{2} K_{2} h=4.32+\frac{1}{2} \cdot(-0.373) \cdot 0.5=4.227 \\
& K_{3}=-1.2\left(y_{3}+\frac{1}{2} K_{2} h\right)+7 e^{-0.3\left(x_{3}+\frac{1}{2} h\right)}=-1.2 \cdot 4.227+7 e^{-0.3 \cdot 1.25}=-0.2614 \\
& y_{3}+K_{3} h=4.32+(-0.2614) \cdot 0.5=4.189 \\
& K_{4}=-1.2\left(y_{3}+K_{3} h\right)+7 e^{-0.3\left(x_{3}+h\right)}=-1.2 \cdot 4.189+7 e^{-0.3 \cdot 1.5}=-0.5634 \\
& y_{4}=y_{3}+\frac{1}{6}\left(K_{1}+2 K_{2}+2 K_{3}+K_{4}\right) h=4.32+\frac{1}{6}[0.001728+2 \cdot(-0.373)+2 \cdot(-0.2614)+(-0.5634)] \cdot 0.5=4.167
\end{aligned}
$$

At the end of the third step: $x_{4}=1.5, y_{4}=4.167$

i	1	2	3	4
x_{i}	0.0	0.5	1.0	1.5
y_{i} (numerical)	3.0	4.069	4.32	4.167

Problem

Write a user-defined MATLAB function that solves a first-order ODE using the classical fourth order Runge-Kutta method.

$$
\frac{d y}{d x}=-1.2 y+7 e^{-0.3 x} \text { from } x=0 \text { to } x=2.5 \text { with the initial condition } y=3 \text { at } x=0 .
$$

Compare the results with the exact (analytical) solution: $y=\frac{70}{9} e^{-0.3 x}-\frac{43}{9} e^{-1.2 x}$.
Using $\mathrm{h}=0.05$.

Solution

To solve the problem, a user-defined MATLAB function called odeRK4, which solves a first-order initial value ODE, is written. The function is then used in a script file, which also generates a plot that shows a comparison between the numerical and the exact solutions. The ODE itself is written in a separate user-defined function that is used by the odeRK4 function.

```
odeRK4.m x ODEFxy.m x +
    function [ x,y ]=odeRK4 (ODE,a,b,h,yini)
    % Variables de entrada:
    % ODE: Nombre para la función que calcula dy/dx.
    % a: Primer valor del intervalo de solucion x.
    % b: Ultimo valor del intervalo de solucion x.
    % h: Tamaño de paso.
    % yini: valor inicial.
    % De variables de salida:
    % x: Un vector con las coordenadas x de la solución.
% y: Un vector con las coordenadas y de la solución.
x(1) = a; y(1)=yini;
n = (b-a)/h
for i = 1:n
    x(i+1)=x(i)+h;
    Kl = ODE(x(i),y(i));
    xhalf = x(i) + h/2;
    yKl = y(i) + Kl*h/2;
    K2 = ODE(xhalf,yKl);
    yK2 = y(i) + K2*h/2;
    K3 = ODE(xhalf,yK2);
    yK3 = y(i) + K3*h;
    K4 = ODE(x(i + 1),yK3);
    y (i + 1) =y (i) + (Kl+ 2*K2 + 2*K3 + K4) *h/6;
end
end
```


Funcion ODEFxy

```
odeRK4.m x ODEFxy.m x +
    function dydx = ODEFxy (x,y)
    %UNTITLED2 Summary of this function goes here
    % Detailed explanation goes here
    dydx=-1.2*y+7* exp (-0.3*x);
    end
```


At the Matlab command

 window$\gg a=0 ; b=2.5 ;$
$\gg h=0.05$; yini=3;
$\gg[x, y]=o d e R K 4(@ O D E F x y, a, b, h, y i n i)$;
Solusion Exacta
>> xp=a:0.1:b;
$\gg y p=70 / 9^{*} \exp \left(-0.3^{*} x p\right)-43 / 9^{*} \exp \left(-1.2^{*} x p\right)$; >>plot(x,y, '*r' ,xp,yp)

A Figure 1
File Edit View Insert Tools Desktop Window Help

Problem

An inductor $\mathrm{L}=15 \mathrm{H}$ and a resistor $\mathrm{R}=1000$ ohms are connected in series with an AC power source providing voltage of $\mathrm{V}=10 \sin (2 \pi \nu \mathrm{t})$ Vots, where $v=100 \mathrm{kHz}$, as shown in the figure. The current $I(\mathrm{t})$ in the circuit is determined from the solution of the equation:

$$
\frac{d I}{d t}=\frac{10 \sin (2 \pi v t)}{L}-\frac{R}{L} I
$$

Solve the equation and plot the current as a function of time for $0<=\mathrm{t}<=1 \times 10^{-4} \mathrm{~s}$ with $I(0)=0$. Using $\mathrm{h}=10^{-9} \mathrm{~s}$.

