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Second Order Runge-Kutta Method

The general form of second-order Runge-Kutta methods is:

where c1, c2, a2 , and b21 are constants. The values of these

constants vary with the specific second-order method.

Con:



Modified Euler method in the form of a second-
order Runge-Kutta method

For the modified Euler method, the constants are:

Substituting these constants yields:



Midpoint method in the form of a second-order
Runge-Kutta method

For the midpoint method, the constants are:

Substituting these constants yields:



Heun's method

In Heun's method the constants are:

Substituting these constants yields:



Example 1
Second Order Runge-Kutta Method in form of modified Euler 
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Example 1
Second Order Runge-Kutta Method: Modified Euler 
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Example 1
Summary of the solution
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Numerically Solving ODE in Matlab

[1,2]. interval over the,4)1(,1

:Problem
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• Step 1: Create a M-file for dy/dx as firstode.m

function yprime=firstode(x,y);

yprime=1+y^2+x^3;

Using Euler modified with h=0.01, 0.02 y 0.5



Step 2: Create a M-file to implement Euler modified. The Matlab program must 

return two column vectors, the first with values of x and the second with value of y.



Step 3: At the  Matlab command window
>> a = 1; b = 2;

>> h1 = 0.01; yini = -4;

>> [X1,Y1 ]=odeRK2EulerModified(@firstode,a,b,h1,yini);

>> h1 = 0.02;

>> [X2,Y2 ]=odeRK2EulerModified(@firstode,a,b,h2,yini);

>> h1 = 0.5;

>> [X3,Y3 ]=odeRK2EulerModified(@firstode,a,b,h3,yini);

>> plot(X1,Y1,'*r',X2,Y2,'*g',X3,Y3,'*b’)

>> fprintf('%4.2f %4.6f \n',X1,Y1)
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Problem
Consider the following first-order ODE:

(a) Solve with the Heun's method using h = 0.5, 1.

(b) Solve with the classical third-order Runge-Kutta method 

using h = 1.

The analytical solution of the ODE is:

In each part, calculate the error between the true solution and the 

numerical solution at the points where the numerical solution is 

determined.



Classical Fourth-Order Runge-
Kutta Method

The most popular RK methods are fourth-order, and 
the most commonly used form is:
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Exercise 

Solving by hand a first-order ODE using the fourth-order 
Runge-Kutta method.

Using h = 0.5.

Solution:

The first point of the solution is (0,3), which is the point where the initial

condition is given. The values of x and y at the first point are x1=0 and y1=3.

The rest of the solution is done in steps. In each step the next value of the

independent variable is calculated by:



The value of the dependent variable Yi+1 is calculated by first 

evaluating K1, K2, K3 and K4 using:

And then substituting the Ks:

First step: In the first step i = 1



Second step: In the second step i = 2



Third step: In the third step i = 3





Problem

Write a user-defined MATLAB function that solves a first-order 

ODE using the classical fourth order  Runge-Kutta method.

Solution

To solve the problem, a user-defined MATLAB function called odeRK4, which solves a

first-order initial value ODE, is written. The function is then used in a script file, which

also generates a plot that shows a comparison between the numerical and the exact

solutions. The ODE itself is written in a separate user-defined function that is used by the

odeRK4 function.

Using h=0.05.





Funcion ODEFxy

>> a=0; b=2.5;
>> h=0.05; yini=3;
>> [x,y]=odeRK4(@ODEFxy,a,b,h,yini);
Solusion Exacta
>> xp=a:0.1:b;
>>yp=70/9*exp(-0.3*xp)-43/9*exp(-1.2*xp);
>>plot(x,y, '*r' ,xp,yp)

At the  Matlab command 

window



Problem
An inductor L = 15 H and a resistor R = 1000 ohms are 
connected in series with an AC power source providing 
voltage of V = 10sin(2πνt) Vots, where ν= 100 kHz, as 
shown in the figure. The current I(t) in the circuit is 
determined from the solution of the equation:

Solve the equation and plot the current as a function of

time for 0 <= t<=1 x 10-4 s with I(0) = 0. Using h=10-9 s.


